

Описание материально-технической базы центра «Точка роста», используемого для реализации образовательных программ в рамках преподавания экология

СОДЕРЖАНИЕ

1		НАЗНАЧЕНИЕ	3
2	0	СНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
	2.1	Беспроводной мультидатчик по экологическому мониторингу	3
	2.2	Дополнительные датчики	3
3		КОМПЛЕКТ ПОСТАВКИ	4
4		УСТРОЙСТВО И РАБОТА	5
	4.1	Состав цифровой лаборатории	5
	4.2	Беспроводной мультидатчик	6
	4.3	Датчик относительной влажности	7
	4.4	Датчик освещенности	7
	4.5	Датчик pH, нитрат- и хлорид-ионов	8
	4.6	Датчик электропроводимости	8
	4.7	Датчик температуры окружающей среды	9
	4.8	Датчик звука с функцией интегрирования	9
	4.9	Датчик температуры	9
		4.10 Датчик влажности почвы	9
		4.11 Датчик кислорода	10
		4.12 Датчики оптической плотности 525 нм, 470 нм, турбидиметр	10
		4.13 Датчик окиси углерода	11
5		ТЕХНИКА БЕЗОПАСНОСТИ	12
6		ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	13
	Г	ПРИЛОЖЕНИЕ А . РАБОТА С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ	14

экология

ВНИМАНИЕ! Перед началом эксплуатации изделия внимательно изучите эксплуатаци-онную документацию, входящую в комплект поставки изделия. Оборудование, вышедшее из строя вследствие неправильной эксплуатации, гарантийному ремонту не подлежит.

1. НАЗНАЧЕНИЕ

Цифровая лаборатория предназначена для проведения учебного экологического мониторинга инструментальными методами.

2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИЯ

2.1 Беспроводной мультидатчик по экологическому мониторингу

Разрядность встроенного АЦП	12 бит
Интерфейс подключения	Bluetooth low energy (BLE) 4.1, USB
Встроенная память, в которую записаны параметры датчика (название, калибровочные характеристики, серийный номер и внутренние настройки), объемом	2 Кбайт
Электропитание	Литий-полимерная батарея, контроллер заряда батареи встроенный
Разъем для подключения зарядного устройства	mini-USB (тип B)

Перечень датчиков, встроенных в мультидатчик, и их технические характеристики:

1. Датчик от	осительной влажности	
2. Датчик ос	ещенности	
3. Датчик рН		
4. Датчик ни	рат-ионов	
5. Датчик хл	рид-ионов	
6. Датчик те	пературы	
7. Датчик эл	ктропроводимости	
8. Датчик те	пературы окружающей среды	

2.2 Дополнительные датчики

1. Датчик звука с функцией интегрирования	
2. Датчик влажности почвы	
3. Датчик окиси углерода	
4. Датчик оптической плотности 630 нм	
5. Датчик оптической плотности 525 нм	
6. Датчик оптической плотности 470 нм	
7. Датчик турбидиметр	
8. Датчик окиси углерода	

ЭКОЛОГИЯ

Примечания:

Z.LABS

- 1) Изготовитель допускает наличие предельных отклонений габаритных размеров изделия ± 20 мм.
- 2) В процессе модернизации производителем, а также в зависимости от партии общий вид, применяемые материалы и элементы конструкции изделий могут изменяться.
- 3) Предприятие-изготовитель оставляет за собой право вносить изменения в конструктивные особенности, а также в набор комплектующих изделия, не отраженных в эксплуатационной документации и не влияющих на уровень технических, эксплуатационных характеристик и параметров безопасности поставляемого оборудования.

3. КОМПЛЕКТ ПОСТАВКИ

Наименование	Кол-во, шт.
Беспроводной мультидатчик	1
Набор лабораторной оснастки, комплект	1
Измерительный электрод рН	1
Ионоселективный электрод нитрат-ионов	1
Ионоселективный электрод хлорид-ионов	1
Датчик электропроводимости	1
Датчик температуры	1
Датчик звука с функцией интегрирования	1
Датчик влажности почвы	1
Мультидатчик оптической плотности и мутности	1
Датчик окиси углерода	1
Кювета 4 мл	10
Магнит	1
Кабель USB Am-Bm 1,8 м	2
Зарядное устройство с кабелем mini-USB для беспроводных мультидатчиков	1
USB адаптер Bluetooth	1
USB флеш-накопитель с ПО	1

Рисунок 3.1. Общий вид

4. УСТРОЙСТВО И РАБОТА

ВНИМАНИЕ! В связи с тем, что производитель оставляет за собой право проводить усовершенствование оборудования, входящего в комплект поставки, улучшающее потребительские свойства, то после установки программного обеспечения, поставляемого на USB флеш-накопителе в составе лаборатории, рекомендуется проверить наличие обновле-ний программного обеспечения для персонального компьютера и мультидатчика.

Дополнительная информация по работе с датчиками лаборатории, инструкции по обновлению программного обеспечения мультидатчика, обновленные версии руководства по эксплуатации, руководства пользователя ПО, методические рекомендации и другая по-лезная информация доступны для скачивания по ссылке:

https://zarnitza.ru/tsifrovye-laboratorii/

4.1 Состав цифровой лаборатории

Набор применяется при изучении экологии, биологии, химии, географии и природоведения, а также для индивидуальных исследований и проектной деятельности школьников.

Состав цифровой лаборатории:

- Беспроводной мультидатчик, содержащий в своем составе:
- датчик температуры окружающей среды;
- датчик освещенности;
- датчик относительной влажности;
- датчик электропроводимости, подключаемый к внешнему разъему мультидатчика;

- датчик температуры, подключаемый к внешнему разъему мультидатчика;
- датчик для измерения pH, нитрат- и хлорид-ионов с измерительными электродами, подключаемыми к внешнему разъему мультидатчика.
- Комплект дополнительных датчиков для работы с персональным компьютером на базе ОС Windows:
 - датчик звука с функцией интегрирования;
 - датчик влажности почвы;
 - датчик оптической плотности 630 нм
 - датчик оптической плотности 525 нм;
 - датчик оптической плотности 470 нм;
 - датчик турбидиметр;
 - датчик окиси углерода.
- Комплект дополнительных принадлежностей и кабелей, предназначенных для зарядки мультидатчика, подключения оборудования к ПК и обновления программного обеспечения мультидатчика.

4.2 Беспроводной мультидатчик

Датчики, требующие подключения внешних измерительных электродов, обозначены на корпусе цветными пиктограммами, помещенными в круг, датчики, расположенные непосредственно внутри корпуса мультидатчика лаборатории, обозначены пиктограммами серого цвета.

Рисунок 4.2.1. Беспроводной мультидатчик по экологическому мониторингу: 1 — сенсорная кнопка вкл./выкл. мультидатчика;

2 – разъем для подключения датчика электропроводимости; 3 – датчик температуры окружающей среды;

4 – датчик освещенности; 5 – датчик относительной влажности;

6 – разъем для подключения датчика температуры;

7 – разъемы для подключения измерительных электродов рН, нитрат-ионов, хлорид-ионов; 8

- USB разъем для зарядки АКБ и подключения к ПК

Мультидатчик имеет возможность для сопряжения с ПК как с помощью USB кабеля, так и по беспроводному Bluetooth каналу связи напрямую, без дополнительных регистраторов данных.

Мультидатчик имеет функционал автономной работы (режим логирования), без подключения к компьютеру или планшетному регистратору.

В режиме логирования запись измеряемых данных осуществляется во внутреннюю память мультидатчика, для последующего доступа к этим данным в программе сбора и обработки данных.

Включение и выключение мультидатчика производятся с помощью единой сенсорной кнопки. Для включения/выключения необходимо удерживать палец на пиктограмме в течение 5 секунд. В случае отсутствия связи мультидатчика с ПК в течение более 3 минут он автоматически выклю-чится.

Беспроводной мультидатчик имеет RGB светодиоды на лицевой панели в количестве 2 штук. Светодиоды отражают следующие статусы для удобства пользователя:

- готовность к сопряжению мультидатчика;
- успешное сопряжение мультидатчика с регистратором данных, на котором установлена программа сбора и обработки данных;
- работа мультидатчика в режиме сбора и передачи данных;
- работа мультидатчика в режиме логирования;
- низкий заряд аккумулятора мультидатчика.

Беспроводной мультидатчик передает следующую информацию с возможностью просмотра этой информации в ПО сбора и обработки данных:

- уровень зарядки батареи мультидатчика;
- версия микропрограммы, содержащейся в энергонезависимой памяти мультидатчика (прошивка);
- артикул мультидатчика;
- актуальность прошивки мультидатчика на текущую дату.

Беспроводной мультидатчик имеет возможность обновления микропрограммы (прошивки) при помощи программы, поставляемой на USB флеш-накопителе.

4.3 Датчик относительной влажности

Одновременно измеряет относительную влажность и точку росы и передает на ПК рассчитанное значение относительной влажности в диапазоне 0–100 %. Для обеспечения доступа свежего возду-ха к датчику на боковой поверхности корпуса мультидатчика, около пиктограммы датчика, имеется отверстие.

4.4 Датчик освещенности

Датчик защищен от инфракрасных излучений с помощью светового фильтра, установленного на корпусе чувствительного элемента датчика. Датчик расположен внутри корпуса мультидатчи-ка. Отверстие для прохождения света расположено на лицевой поверхности под соответствующей пиктограммой.

Рисунок 4.4.1. Датчик освещенности

4.5 Датчики рН, нитрат- и хлорид-ионов

Измерительная часть датчика содержит 2 канала измерения для подключения внеш-них электродов (измерительного электрода и электрода сравнения). Оба канала измерения позволяют измерить потенциал, формирующийся на выходе измерительных электродов в диа-пазоне +/— 800 мВ, и с помощью программного обеспечения пересчитать эту величину в едини-цы рН в диапазоне 0—14 после проведения процедуры калибровки. Калибровка рН электрода производится с помощью двух буферных растворов 4.00 (4.01) рН и 6.86 рН, порошки для приготов-ления которых входят в комплект поставки лаборатории.

Рисунок 4.5.1. Измерительные электроды рН, нитрат- и хлорид-ионов

4.6 Датчик электропроводимости

Рисунок 4.6.1. Датчик электропроводимости

Измерительная часть датчика имеет электронный переключатель диапазонов измерения, управляемый с помощью программного обеспечения. Датчик позволяет производить измерение электропроводимости растворов с помощью внешнего измерительного щупа, подключаемого к соответствующему разъему, обозначенному пиктограммой на корпусе мультидатчика.

4.7 Датчик температуры окружающей среды

Датчик выполнен в виде полупроводникового прибора, находящегося внутри корпуса мультидатчика и имеющего сообщение с окружающей средой. Показания датчика могут отличаться от внешнего датчика температуры, поскольку внутри корпуса мультидатчика при работе электронных компонентов выделяется дополнительное тепло. В связи с этим показания данного датчика могут быть использованы с учетом разницы температур относительно внешнего датчика температуры.

4.8 Датчик звука с функцией интегрирования

Рисунок 4.8.1. Датчик звука

В схему встроен интегральный звуковой усилитель сигнала.

На нижнюю часть датчика установлена магнитная полоса, обеспечивающая надежную фикса-цию датчика на металлической поверхности.

Чувствительный элемент датчика расположен на боковой поверхности корпуса датчика, по-этому при проведении измерений с помощью датчика следует ориентироваться в направлении источника звука.

Датчик не требует отдельного источника питания. Питание датчика осуществляется через USB кабель при подключении к ПК.

4.9 Датчик температуры

Чувствительный элемент датчика – РТС термистор, который размещен на конце зонда, пустоты наконечника заполнены термопастой.

4.10 Датчик влажности почвы

Датчик оснащен выносным щупом для погружения в почву.

экология

На нижнюю часть датчика установлена магнитная полоса, обеспечивающая надежную фикса-цию датчика на металлической поверхности.

Датчик не требует отдельного источника питания. Питание датчика осуществляется через USB кабель при подключении к ПК.

Очистку щупа датчика после проведения экспериментов необходимо проводить с помощью влажной ткани или салфетки.

Рисунок 4.10.1. Датчик влажности почвы

4.11 Датчик кислорода

Измерительный элемент датчика построен на базе электрохимического сенсора, чувствитель-ного к содержанию кислорода.

На нижнюю часть датчика установлена магнитная полоса, обеспечивающая надежную фикса-цию датчика на металлической поверхности.

Время установления показаний датчика около 30 секунд.

Датчик требует периодической калибровки в процессе эксплуатации. Для калибровки датчика требуется газовая среда с содержанием кислорода не менее 25 %.

Датчик не требует отдельного источника питания. Питание датчика осуществляется через USB кабель при подключении его к ПК.

4.12 Датчики оптической плотности 525 нм, 470 нм, турбидиметр

Датчики предназначены для определения прозрачности растворов на различных длинах волн. Датчики поставляются с комплектом стандартных кювет.

Измерение оптической плотности и прозрачности растворов производится в два этапа. Первоначально производится калибровка датчика с кюветой, заполненной дистиллированной водой (для датчиков оптической плотности), либо предварительно приготовленным раствором с извест-ной оптической плотностью (для турбидиметра), после этого производится непосредственно из-мерение исследуемых растворов.

На нижнюю часть датчиков установлена магнитная полоса, обеспечивающая надежную фик-сацию датчиков на металлической поверхности, также в комплект поставки лаборатории входят

подставки из поликарбоната для установки датчиков на неметаллическом основании.

Датчики не требуют отдельного источника питания. Питание датчиков осуществляется через USB кабель при подключении их к ПК.

Рисунок 4.12.1. Датчик оптической плотности 525 нм

4.13 Датчик окиси углерода

Рисунок 4.13.1. Датчик окиси углерода

Измерительный элемент датчика построен на базе электромеханического сенсора, чувствительного к содержанию монооксида углерода.

На нижнюю часть датчика установлена магнитная полоса, обеспечивающая надежную фикса-цию датчика на металлической поверхности.

Время установления показаний датчика около 30 секунд.

Датчик требует периодической калибровки в процессе эксплуатации. Для калибровки датчика требуется газовая среда с известным содержанием окиси углерода.

Датчик не требует отдельного источника питания. Питание датчика осуществляется через USB кабель при подключении его к ПК.

$\langle Z \rangle$

5. ТЕХНИКА БЕЗОПАСНОСТИ

При эксплуатации оборудования необходимо соблюдать следующие правила безопасности:

- К обслуживанию оборудования допускаются лица, изучившие настоящий паспорт, а также прошедшие инструктаж по технике безопасности.
 - ЗАПРЕЩАЕТСЯ установка изделия на неустойчивые, незакрепленные конструкции.
- Перед началом эксплуатации оборудования необходимо убедиться, что оборудование находит-ся в выключенном состоянии.
- При обнаружении любых повреждений и неисправностей оборудования, а также при появле-нии дыма, искрения или специфического запаха перегретой изоляции, немедленно обесточьте оборудование.
 - ЗАПРЕЩАЕТСЯ эксплуатировать неисправное оборудование.
 - ЗАПРЕЩАЕТСЯ использовать изделие и его отдельные компоненты не по назначению.
 - ЗАПРЕЩАЕТСЯ вскрывать и разбирать изделие.
 - ЗАПРЕЩАЕТСЯ видоизменять принципиальную схему и общие функции работы изделия.
- При эксплуатации изделия необходимо соблюдать Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок потребителей.
- Изделие эксплуатировать только в помещении без повышенной опасности по степени пораже-ния электрическим током.
- Во избежание поражения электрическим током и выхода из строя элементов изделия при рабо-те запрещается использовать внешние источники питания.
- Не устанавливайте оборудование в непосредственной близости от легковоспламеняющихся и распространяющих огонь предметов.
 - Не оставляйте оборудование включенным без присмотра.
 - Не допускайте попадания жидкости внутрь оборудования.
 - Не оставляйте оборудование в режиме ожидания на длительное время (более 12 часов).
- Во избежание поломок оборудования не прикладывайте чрезмерных усилий при манипуляции с органами управления.

ВНИМАНИЕ! Используйте только исправные разъемы электропитания. Убедитесь, что они имеют плотное соединение. При использовании тройников и удлинителей убедитесь в надежности их крепления.

ВНИМАНИЕ! В целях исключения выхода из строя оборудования из-за некачествен-ных параметров электросети рекомендуется дополнительно установить стабилизирован-ный источник питания. Оборудование, вышедшее из строя вследствие скачка напряжения в сети, гарантийному ремонту не подлежит.

6. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

В процессе транспортировки и хранения необходимо соблюдать следующие условия:

- Перевозить изделие следует только в упакованном виде.
- После хранения оборудования в холодном помещении или после перевозки в зимних условиях включать его в сеть можно не раньше чем через 6 часов пребывания при комнатной температуре в распакованном виде.
 - При транспортировке изделие необходимо надежно зафиксировать.
- Для транспортировки изделия следует использовать автотранспорт с закрытым грузовым отделением. Грузовое отделение должно исключать попадание внутрь влаги, атмосферных осадков, частиц грязи и не иметь острых или твердых выступающих элементов, которые могут повредить упаковку изделия.
- При перегрузке, транспортировании и разгрузке должны строго выполняться требования манипуляционных знаков и надписей, указанных на таре.
- В процессе перевозки или хранения не складывать на изделие тяжелые предметы.
- Хранить и перевозить оборудование вдали от нагревательных приборов и открытого огня.
- Нельзя ронять изделие.
- Не допускать механического повреждения элементов корпуса.
- Не допускать утери мелких частей крепления.
- Упакованное изделие при хранении должно быть защищено от механических повреждений, загрязнений, атмосферных осадков, воздействия агрессивных сред.
- Не допускается резкая смена условий хранения воздействие высоких и низких температур, а также влажности воздуха.
- Не допускается хранение упакованного изделия на влажных, холодных, горячих поверхностях и вблизи от них.

ПРИЛОЖЕНИЕ А. РАБОТА С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ

Программное обеспечение цифровой лаборатории **Z.Labs**[®] предназначено для просмотра дан-ных, получаемых с датчиков цифровой лаборатории, проведения лабораторных работ, построения графиков, а также настройки и калибровки датчиков.

1. Подключение мультидатчика

При запуске программы на экране появляется главное окно с открытой вкладкой подключе-ния к датчикам. Подключение к мультидатчику возможно как по проводному, так и по беспро-водному соединению. По умолчанию, подключение осуществляется через беспроводное соеди-нение ($Bluetooth\ Low\ Energy$). Перед подключением в окне отображаются устройства, видимые по Bluetooth-coeдинению. Мультидатчики имеют названия PHYS0001, CHEM0001, BIO0001 и т.п., где цифры соответствуют серийному номеру, указанному на корпусе цифровой лаборатории. Некоторые датчики подключаются только по проводному соединению, например, датчик влажности почвы, датчик окиси углерода, колориметр. Выбор типа подключения проводное/беспроводное осущест-вляется нажатием соответствующих кнопок (USB) (U

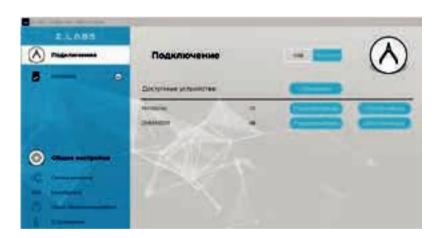


Рисунок А.1 – Подключение мультидатчика по беспроводному соединению

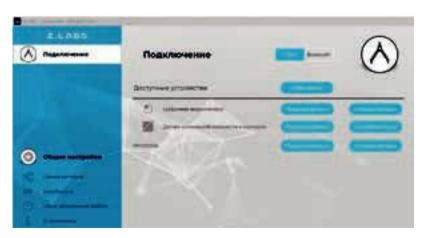


Рисунок A.2 – Подключение по USB – проводному соединению

Для подключения к цифровой лаборатории необходимо выбрать мультидатчик из списка види-мых устройств и нажать кнопку «Подключиться». При этом, в левой области рабочего окна отобра-зится иконка мультидатчика с выпадающим списком, включающим все встроенные датчики.

2. Настройка мультидатчика и подключенных датчиков

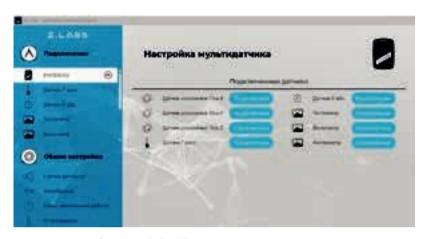


Рисунок А.3 – Настройка мультидатчика

Перейдя на вкладку «Настройка мультидатчика» можно оставить видимыми только те датчики, которые требуются для проведения лабораторной работы, а остальные временно отключить.

При выборе датчика в левой панели окна, пользователь получает доступ к настройкам отображения его показаний в программе, в том числе к настройкам единиц измерения, диапазона значений, вида графика и т.п. Данные настройки применяются для каждого датчика индивидуально.

Рисунок А.4 – Настройка отображения показаний датчика

3. Общие настройки программы

Во вкладке «Общие настройки» появляется возможность задать время эксперимента, формат времени (секундомер, мм:сс, чч:мм), вид графика (линия, точки, линия+точки).

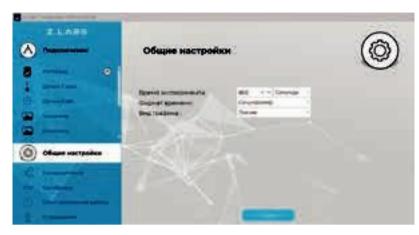


Рисунок А.5 – Раздел «Общие настройки»

Здесь же расположена кнопка «Пуск» для запуска эксперимента. (см. главу «Проведение эксперимента»).

Также в данном разделе имеются подразделы «Связка датчиков», «Калибровка», «Сеанс автономной работы» и «О программе».

В разделе «Связка датчиков» можно выбрать несколько датчиков из списка подключенных, дан-ные которых будут отображаться одновременно на временном графике. Эта функция позволяет отслеживать одновременные изменения показаний датчиков и выявлять корреляции при проведении лабораторной работы.

Рисунок А.6 - Связка датчиков

4. Калибровка датчиков

Калибровка представляет собой процесс настройки датчика, при котором пользователь может переопределить (переназначить) показания датчика, опираясь на точные известные значения. Раз-дел «Калибровка» позволяет провести эту процедуру по одной, либо по двум точкам значений дат-чика (ступеням).

Для входа в раздел «Калибровка» необходимо ввести пароль администратора с целью предотвращения несанкционированного изменения показаний (по умолчанию пароль - «12345»).

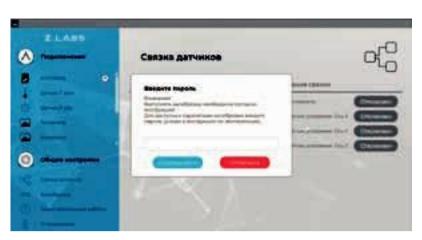


Рисунок А.7 – Ввод пароля для открытия раздела «Калибровка датчиков»

Рисунок А.8 – Раздел «Калибровка датчиков»

При выборе датчика открывается окно калибровки данного датчика.

Рисунок А.9 – Процесс калибровки датчиков

Пример калибровки датчика температуры:

Текущее значение датчика температуры, с учетом текущих калибровочных коэффициентов пользователя - 27,9 °C.

В поле «Фактическое значение (ступень №1)» вводится известное значение, которое должен показывать датчик. Это значение можно получить, например, измерив температуру точным промышленным прибором. После ввода значения нужно нажать кнопку «Применить».

В области «Новое значение» отобразится значение датчика с учетом нового коэффициента калибровки.

Подтверждение калибровки осуществляется нажатием кнопки «Сохранить настройки», при этом коэффициент калибровки записывается в устройство.

При двух ступенях калибровки расчет нового значения происходит только после того, как будут введены известные значения для двух разных показаний датчика.

При необходимости, можно обнулить пользовательские калибровочные коэффициенты како-го-либо датчика. Для этого нужно нажать кнопку «Возврат к заводским настройкам».

5. Сеанс автономной работы

Сеанс автономной работы – режим накопления мультидатчиком данных в течение определенно-го промежутка времени. При этом не требуется подключение к компьютеру – мультидатчик нака-пливает показания автономно, с использованием энергонезависимой памяти.

Рисунок А.10 - Раздел «Сеанс автономной работы»

Для запуска накопления данных необходимо выбрать раздел «Сеанс автономной работы» и вве-сти интервал между снятиями показаний, а также количество показаний датчиков, которые необ-ходимо собрать (не более 100). При нажатии на кнопку «Запустить сеанс автономной работы» вы мо-жете оставить мультидатчик на требуемое время, в том числе, прервать соединение с компьютером. Если в памяти устройства уже находятся накопленные данные с предыдущего сеанса автономной работы, то в графе «Статус» будет указано «Сеанс автономной работы завершен». Если данных в па-мяти устройства нет, то в «Статусе» будет указано «Архив пустой».

При нажатии на кнопку «Запустить сеанс автономной работы» появится предупреждающее диалоговое окно.

Рисунок А.11 – Предупреждение о возможной потере данных

После окончания сбора данных, статус архива изменится на «Сеанс автономной работы завершен», и станет активной кнопка «Работа с данными сеанса». При нажатии на эту кнопку, данные выгружаются в виде таблицы значений, а также в виде графика. Для просмотра данных использу-ются соответствующие кнопки:

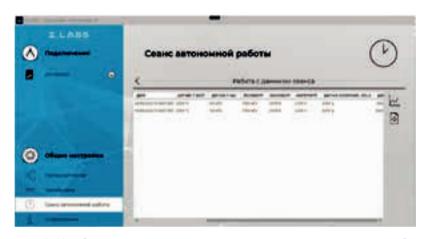


Рисунок А.12 – Окно просмотра значений данных сеанса автономной работы

Результаты работы можно сохранить на компьютере, нажав кнопку «Сохранить» во вкладке с таблицей данных сеанса. При этом появится диалоговое окно сохранения файла,

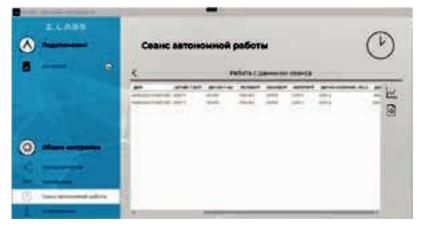


Рисунок А.12 – Окно просмотра значений данных сеанса автономной работы

экология

Я

в котором необходимо указать путь и название сохраняемого документа. Сохраненный файл (с расширением *.csv) можно открыть как стандартной программой «Блокнот», так и с помощью офисных программ (MS Excel, либо эквивалент).

Рисунок А.13 – Окно просмотра графика сеанса автономной работы

Рисунок А.14 – Выбор видимости графиков

Видимую область графика возможно передвигать, удерживая правую кнопку мыши. Также присутствует возможность масштабирования графика — увеличение/уменьшение видимой области графика можно осуществить с помощью колесика мыши либо, нажимая одновременно ${\it «Ctrl»}$ и ${\it «+»/«-»}$. Нажатие левой кнопки мыши позволяет узнать значение в определенной точки графика.

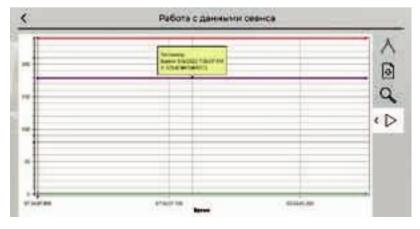


Рисунок А.15 – Отображение значения графика в выбранной точке

При изменении масштаба видимой области графика возврат к первоначальному масштабу осуществляется нажатием на кнопку «Сбросить масштаб»

Программа поддерживает экспортирование данных в файл изображения. При нажатии на кноп-ку «Сохранить» во вкладке графика работы с данными сеанса появится диалоговое окно сохране-ния файла, в котором необходимо указать место и название сохраняемого документа. Поддержи-ваемый формат файлов с изображения — *.png. Внимание! В файле изображения будет сохранена текущая видимая область графика, поэтому если перед сохранением график масштабировался или сдвигался, то рекомендуется вернуть его к нужному виду, сбросив масштаб.

Раздел «О программе» позволяет просматривать версию установленного программного обеспечения, а также версию программного обеспечения мультидатчика, и, при необходимости, обнов-лять его. Также, в данном окне доступна ссылка на Руководство по эксплуатации и на страницу поддержки от завода-изготовителя.

Рисунок А.16 – Окно просмотра информации о программе

6. Проведение эксперимента

При нажатии кнопки «Пуск» из окна «Общие настройки» запустится режим измерений (снятия показаний с датчиков), и рабочее окно примет вид:

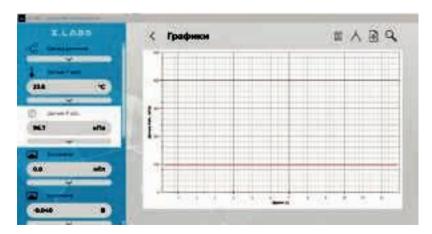


Рисунок А.17 – Режим измерений

При помощи правой кнопки мыши можно посмотреть данные графика в любой точке.

ЭКОЛОГИЯ

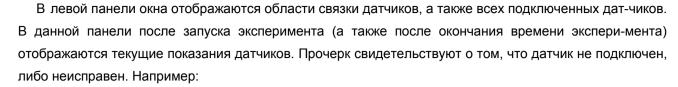


Рисунок А.18 – Отсутствие показаний датчика

Для удобства отображения данных пользователь имеет возможность указывать диапазон значе-ний датчиков по оси Y. Для этого необходимо ввести желаемые значения в соответствующие поля и нажать кнопку «Применить».

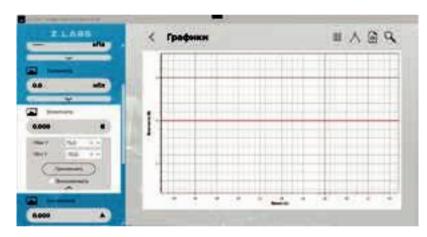


Рисунок А.19 – График текущего эксперимента

Масштабирование можно зафиксировать, отметив галочкой поле «Фиксировать».

Также уменьшение видимой области графика можно осуществить с помощью колесика мыши, либо нажимая одновременно «Ctrl» и «+»/«-», либо выбором области левой кнопкой мыши:

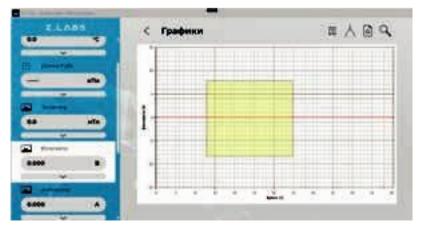


Рисунок А.20 – График текущего эксперимента – масштабирование заданной области

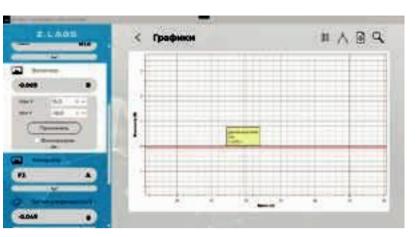


Рисунок А.21 – График текущего эксперимента – просмотр данных в выбранной точке

Программа поддерживает экспортирование данных в файл изображения: при нахождении во вкладке «График» при нажатии на кнопку «Сохранить» появится диалоговое окно сохранения фай-ла, в котором необходимо указать место и название сохраняемого документа. В данном случае со-хранится файл изображения *.png. Внимание! В файле изображения будет сохранена текущая ви-димая область графика, поэтому если перед сохранением график масштабировался или сдвигался, то рекомендуется вернуть его к нужному виду, сбросив масштаб.

При нажатии на пиктограмму осуществляетс <u>я пе</u>реход к вкладке с таблицей данных, и соответственно, обратно, при нажатии на пиктограмму

Рисунок А.22 – Просмотр таблицы значений текущего эксперимента

Программа поддерживает экспортирование данных в файл *.xls. При нажатии на кнопку «Сохранить» появится диалоговое окно, в котором необходимо указать место и название сохраняемого документа.

Для приостановки эксперимента следует нажать кноп<u>ку «</u>Пауза» , для продолжения в случае, если эксперимент ранее был приостановлен – старт

После того, как эксперимент завершится, то есть будет достигнута указанная длительность эксперимента в области «Общие настройки», графики перестанут обновляться.

Возврат в меню настроек осуществляется путем нажатия на кнопку